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FINDING THE INTERSECTION OF A SET OF n HALF-SPACES IN TIME O(nlogn)

*
F. P. Preparataf and D. E. Muller
Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

Abstract

Given a set of n half-spaces in three-dimensional space , we develop an
algorithm for finding their common intersection in time O(nlogn). The
intersection, if nonempty, is presented as a convex polyhedron. The algorithm
is nu;nntizod as follows: (1) the half-spaces are placed in two sets :
depending upon whether they contain or do not contain the origin; (ii) the
half-spaces in each of these sets are dualized to points, and the coavex
hulls of the dualized sets are obtained in time O(dlogn); (i11) since the
half-space intersection-is nonempty if and only if these two couvex hulls are
disjoint, a separating plane is found, also in time O(nlogn); {(iv) after
applying a linear spatial transformation which maps the separating plane to
infinity, the convex hull of the union of the two transformed convex hulls
is the transformed intersection of the half-spaces. Since the latter can be
found in time O(n), the overall running time of the procedure is O(nlogn). A
significant consequence of this result is that a three-variable linear, or
convex, programming problem can be asymptotically solved faster than by the

Simplex algorithm, in the worst case.
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1. Introduction

To find the common intersection of a set of n three-dimensional half-
spaces is an important problem in computational geometry. Perhaps the most
familiar application of this problem occurs in mathematical optiﬁization,
specifically in three-variable linear and convex programming [l1]. In fact, as
is well-known, a linear programming problei in the variables (x,y,z) consists
of extremizing a linear objective function of x, y, and z subject to a set
of n linear inequalities in these variables. These inequalities define the
set of the feasible solutions to the problem. It is well-known that this
set is a convex region of space, which is the intersection of the half-spaces
corresponding to the inequalities; it is also known that the extremum solution

occurs at one vertex, or extreme point, of the region of the feasible solu-

tions (feasible region). Thus the linear programming problem can be solved
by determining the extreme points of the feasible region, and evaluating the
objective function at each of them. The same considerations entirely apply
to convex programming with linear constraints when the convexity of the
objective function is such that its extreme value occurs at an extreme

point of the feasible region.

The most successful method for solving these optimization problems is
the Simplex algorithm (1]. With three variables, the Simplex algorithm
involves traversing a path on the polyhedral surface which bounds the
feasible region, until the extremizing vertex is reached. Since the
Simplex algorithm spends time O(n) in moving from one vertex to the next

vertex, and in the worst case it may have to visit O(n) vertices before
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terminating, we conclude that its running time is O(nz).

For the two-variable version of these problems, M. I. Shamos and
Hoey [2] have shown that the intersection of n half-planes can be computed
in time O(nlogn), thereby obtaining a method for solving the two-variable
linear programming problem which is faster than the Simplex algorithm in
the worst-case. Their method is based on the divide-and-conquer technique,
i.e., on finding in time O(n) the intersection of two polygons, which are
respectively the common intersections of two sets of approximately n/2
half-planes.

Shamos [3] also suggested that, if one finds a fast algorithm for
intersecting two polyhedra, then this could be used - by the divide-and-
conquer technique - to obtain a fast algorithm for finding the intersection
of a s;t of half-spaces. In turn, the latter could be applied to the linear
programming problem. In a companion paper [4], we have described an algorithm
for intersecting two polyhedra, whose total number of vertices is n,
in time O(nlogn). This method, if used as a merge technique in a divide-
and-conquer approach, would yield a running time O(n(logn)z) for finding the
common intersection of n half-spaces. In this paper we show, instead,
that the latter problem can also be solved in time O(nlogn). Our technique
is crucially based on the polyhedron intersection algorithm, but not as a
merge technique; rather, it uses it to transform the original problem into
its dual, i.e., that of finding the convex hull of a set of n three-
dimensional points, which is known to be solvable (by a divide-and-conquer
technique) in time O(nlogn).

The computation model adopted in the preceding algorithms was a
random-access machine using real-number arithmetic. We shall also assume

this model in the future discussion.
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We shall now precisely formulate our problem: Finding the intersection

of n three-dimensional half-spaces consists of finding the solutions to a
set of n linear inequalities of the form

a, X +a,y+a,z+a, 20 (i=1,...,n) (1)

where x, y, and z are cartesian coordinates of a solution in three-space
and where, for each i, the an, ass aﬂ, a,, are real numbers which are
not all 0.

For reasons to be explained later, it is more convenient to express the

points in homogeneous coordinates xl, xz, x3, and xa so that x = xllxa, i

y = lexa, and z = x3/x4. We obtain therefore, the related set of
inequalities:

8 1% + 8,,%) + 8,9Xy + 8%, 20 (L= 1,s0:50) 5 (2)
from which we can obtain the solutions to the original set. In fact, the (
solutions to (2) form a convex set which may be separated into three disjoint
subsets each also convex. They are (i) the positive points, having x, >0
which correspond to solutions of (1), (ii) the equatorial points, having

x, = 0, and (iii) the negative points having X, <0.

A AL 5 A s 0

The set of solutions to (2) will be described by a system having the

v

following form: !
| 1 1. A minimum subset of (2), (i.e., all redundant inequalities will
be deleted), corresponding to the faces F of a generalized polyhedron

d, to be defined later.

2. A minimum set V' of extreme points 0‘1’*2"3"4)' The set of
solutions to (2) consists of the linear combinations of the elements of

V' with nonnegative coefficients. The three-dimensional nonhomogeneous

correspondents of the elements of V' form the set V of vertices of the

generalized polyhedron &.
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3. A data structure, called a doubly-connected edge-list (see [4])

describing the relation between V and F, that is, the cycles of edges
incident on vertices in V and the cycles of edges bordering faces in F.

One advantage to treating solutions to the set (2) of inequalities is that
the extreme points ‘all lie within the range of the variables, while the
extreme points of (1) may lie at infinity. A second advantage is that,
as we shall see, the duality between V and F is complete in the case of (2),
and we shall be able to take full advantage of it.

In the next section we shall briefly discuss some geometric notions

which are instrumental to the subsequent davelqpnents.

2. Geometrical Preliminaries

As is well-known, there is a convenient interpretation of homogeneous

coordinates in 33 if one views (xl,xz.x3,x4) as coordinates in four-dimensicaal

space E4 and normalizes them by multiplication by a positive constant
so that xi + xg + xg + xz = 1, i.e., to points on the surface of the
unit hypersphere S4 with center at the origin. The positive points
lie in what we shall call the positive open hemisphere consisting

of points in sa with x, > 0; similarly the negative points lie

in the negative hemisphere and the equatorial points lie in the inter-

section of the hypersphere with the equatorial hyperplane %

i

b
Figure 1. An illustration of the positive and negative a:ti in two dimensions.
The arrows indicate the half-planes defined by (1l).
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The three-dimensional space containing the solutions to (1) can be
viewed as the hyperplane x, = 1, which is tangent to 34, and a projection
from the origin establishes a one-to-one correspondence between points of
the positive hemisphere and points of E3. Each of the hyperplanes of (2)
passes through the origin of 34 and defines a correspoiding half-space;
the common intersection of these half-spaces is a (convex) cone cﬁ. The
intersection of Cﬁ with S4 is a connected domain which may cross the
equatorial hyperplane; in the latter case, points of(ﬁa n S4 in the positive
hemisphere will be a projected to points in the positive set, whereas the
points of Cﬁ n S4 in the negative hemisphere will be projected to a set
of points in the hyperpilane X, - -1, which will in turn map to the negative
set in X, = 1 by a symmetry with respect to the origin of Ea (see figure
1(b) for an illustration in one less dimension). This combined set in the
hyperplane X, = 1 may, thus, consist of two separate unbounded convex sets,
the positive and negative, as illustrated two-dimensionally in figure 1l(a).
We call this the hyperbolic case. If all points of the solution project
into the positive (or the negative) open hemisphere, the corresponding set

in E3 is bounded and we call this the elliptic case. The parabolic case

occurs when there is a single, but unbounded set in E3, i.e., the case
when equatorial as well as positive (or negative) points occur in 84. In
all three cases the sets of points form what we shall call a generalized

convex polyhedron. The elliptic case alone corresponds to a conventional

polyhedron.
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In the sequel we shall make frequent use of an involutory transformation
from points to planes and vice-versa called dualization. Under dualization

the coordinates (§1,§2,g3,g4) of a point are reinterpreted as the coefficients

= 2
defining a half-space glxl + §2x2 + §3x3 + §4x4 0. Dualization is susceptible

of two intuitive geometric interpretations - one in E4 and one in E3. In
E4 each point on S4 is viewed as the terminus of a (unit) vector applied
to the origin and its dual is the half-space containing this vector whose
boundary hyperplane passes through the origin and is orthogonal to this
vector. Conversely, each half-space through the origin dualizes into the
corresponding vector. In E3 a positive point at distance £ from the origin
is mapped into a half-space containing the origin whose boundary plane is
at distance 1/¢ from the origin in a direction opposite to the point. If
the point is negative, the complementary half-space is obtained with the same
boundary. Conversely, any half-space whose boundary plane does not contain
the origin has a point as its dual. This point is interpreted as being
positive or negative depending upon whether the half-space contains the
origin.

After dualizing the system of inequalities we shall need to apply various

algorithms which construct the convex hull of a set of points, and follow this

operation by an inverse dualization. Since the convex hull algorithms in their

published version [5] apply to the conventional or elliptic case, we shall
find it convenient to first apply an invertible ljinear transformation of
coordinates to (2) in E‘. This transformation will have the effect in E3

of moving the origin to a selected point and hence will enable us to reduce

S —




the dual system to the elliptic case as desired. The transformation will

be described by a nonsingular 4 X 4 postmultiplicative matrix T. It is
desirable, however, in order to avoid unnecessary coordinate manipulations,
to restrict ourselves to linear transformations of E4 which map S4 to itself.
These transformations are readily characterized. Letting the row vector £
denote a point on 34’ we know that gfg' = 1(1); the image ET of § must be

on 84, whence ET(ET)' = ETT'E' = 1. Since § is arbitrary on 84, the latter

holds if and only if T°T' = I,, the 4 X 4 identity matrix, i.e., '1‘.1 i

4
This is the characteristic property of rotations: thus we shall only consider

rotations of Ea. It is worth noticing that rotations commute with dualization,

that is, the dual of the image (under rotation) of a point coincides with

the image of the dual of that point.

3. Finding the Intersection

We shall now rewrite (2) in matrix form
Ax' 2 0 (3)

where A = Hain is an n X 4 matrix. Let A+, AO’ and A_ be the matrices
formed from the rows of A for which ., >0, a, = 0, and a4 <0
respectively. In a later discussion we shall show that,except in
degenerate cases which can be reduced to a problem of lower dimensionality,

it is possible to find a rotation R, of A which eliminates A.. Therefore,

0 0
we assume that in (3) such a rotation has already been made and that either

a, >0 or a, < 0 for each i.

(1)5' is the transpose of £.
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3
Each row (au,aiz,an,am) of A+ represents a plane in E~ (or, equivalently,
a hyperplane through the origin in E4). We now dualize each such plane, i.e.,
3
we construct a point (an/a.m,aiz/am,313/314) in E” and apply the

)(2)
of these points: notice

algorithm of [5] to find the convex hull g
that the algorithm is directly applicable because each point has finite
coordinates. The same procedure is then used to construct a convex

polyhedron dSD) from the matrix A_. We may now apply to the two three-
dimensional polyhedra d_f_D) and de) an algorithm, described in [4], which
determines whether the two polyhedra intersect and, if so, finds the inter-
section, and if not, finds a separating plane. Actually if din) n d_(_D) has an
interior (i.e., nonzero volume), we need not explicitly construct it, since

in this case the set of inequalities (3) is inconsistent and has no solution.

In fact, by simple reasoning on duality, any point U = (U;,U,,U;) in the

interior of d(D)

L must satisfy Wx, + Yx, + Wx, +x, >0 when x =(X5X,,Xq,%,)

is any solution of (3). If u is also in the interior of dED) then it must
satisfy WXy - WXy - WXy - X, > 0 as well, so we conclude that (3) has no
solution.

If d_f_D) n dSD) is nonempty but has no interior, the problem reduces to
one of lower dimensionality to be discussed in Section 4.

Finally suppose that d_f_D) and dSD) do not intersect. 1In this case we
find a separating plane by the method described in [4], and let
pyx + 1% + p3z + p4 = 0 be this plane, with the signs of the coefficients

so chosen that for any point (a,b,¢) in df_D) we have P2 + pzb + p3c + P, > 0.

(2)'1110 letter '"D" as an apex is to remind us that we are dealing with the
convex hull of the dual set of points.

e . " 2 A : ade e
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The separating plane just found may be extended to a hyperplane
PX, + P,yX, + PyX, + PX, = 0 through the origin, whose normal in 34 is the
vector (pl,pz,pypa). We now wish to rotate coordinates in Ea so that this
vector points toward the origin of Ea. In other words, we wish
to find a rotation R such that (pl,pz,pypa)k = (0,0,0,K), where K is

+ p§+:§ + pZ). A suitable rotation

a positive number (actually K = 1

is easily constructed as a product RIR2R3, where each Ri causes p, to go

to 0, For example, we may take

B " S
P,/"P] + P, 0 0  p /e +up,
: 0 § - 0 0
. " 0 R 0
. 2

The elements of the 4 X 4 matrix R can be computed in time bounded by a
constant using the operations of arithmetic including square root.
We claim that the fourth column of the matrix AR consists entirely of

positive entries. In fact, system (3) can be rewritten as
Ax' = A(RR-I)E' = ARR'x' = AR(XR)' 2 0. 3"

Since the point p = (Pl’pZ’pB’Pa) satisfies a9 + "1292 + a, 4P, + A >0
foc each i, the image of p under the rotation,which is (0,0,0,K),

satisfies a corresponding set of strict inequalities using the rows of

AR, 1In each of these inequalities the only nonzero term is the positive
constant K multiplied by the fourth entry in the corresponding row of AR,

thereby establishing the claim.
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There is no need, however, to construct AR, since it may contain
irrelevant rows which we want to suppress. Instead, for each vertex
(D)
(ai1/314,a12/ai4,a13/ai4) of QL we construct a row (311’312’a13"14) of
(m)
A+

a new matrix whose rows form a subset of the rows of A+. Similarly,

for each vertex of d{D) we find the corresponding row in A_and from these
rows form a new matrix AEm).

Let Ai = Aim)R and A* = Afm)n; the set of inequalities

(A%, ax]' €' 20 %

is equivalent to A&E' 2 0, with all irrelevant inequalities deleted.

Since (4) is satisfied by (0,0,0,1), the origin in E3, conceptually the
intersection of the original n half-spaces can be found by: (i) dualizing the
planes corresponding to the rows of [Ai,Af], (ii) finding the convex hull
of the set of points thus obtained, and (iii) dualizing back the convex hull.
However, this sequence of operations can be considerably simplified. The
duals of the planes corresponding to the rows of Aié) and AEm) are already
available as the vertices of the polyhedra din) and d{D) respectively. Thus,
to obtain the analogous polyhedra di(D) and df(D) for AI and A* respectively,
we rotate the polyhedra dﬁp) and dfn) (which lie in the x4 = 1 hyperplane)
by R and then project them through the origin of E4 back to the hyperplane
X, = 1. In practice, this means multiplying the coordinates of each of
the rotated vertices by a number which makes its fourth coordinate 1.

The two polyhedra di(n) and ag(D) are disjoint because they are

separated by a hyperplane through the origin of Ea normal to the R-transform
of the vector (0,0,0,1). We therefore may construct the convex hull of

the union a:‘”’ U a‘f(D) by a single application of the '"mer ;2" portion
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of the algorithm of (5] in time proportional to the total number of
- vertices in the two polyhedra. Llet us call this resulting polyhedron
@D
Now, the dual @ of the polyhedron d‘*(n) represents the set of

solutions to the system of inequalities

‘le + ahy + lbz + ‘Ilc 20 (i=1,...,n) (1')

where the coefficients ‘Ij are the elements of the matrix A* = AR, and we
recall that all the coefficients a{a are positive.
1 to the vertices and faces of @*, Now &* lies in

We therefore apply the

inverse rotation R
the hyperplane x, = 1, so the four-dimensional rotation R'l is applied
to vertices of @* of the, form (vt,vi,vg,l). The resulting vertices
(vl,vz,va,v4) must be renormalized if v4-# 0, and this is dome by

multiplying each of the coordinates by the positive constant 1/ |v4|.

The result of this rotation and renormalization is a set of vertices
and associated faces which we can represent by a doubly-connected edge-
list and which we shall call a generalized polyhedron &. The vertices of
this generalized polyhedron with fourth coordinate equal to 1 are the

extreme points of the intersection of the half-spaces.

In the beginning of this discussion it was stated that an initial rotation

: RO of coordinates could be found which would make each entry a5, in the

ii fourth column of the matrix A different from 0.

We shall now describe how
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Ro is obtained. As before, we define Ao to be the matrix composed of rows

from A having a“ = 0. Inequalities of the set (1) corresponding to these

TOwWS appear as
ailx + aizy + a
We seek to find a point u =(u

132 20 . )
1,\12,113) in E3 which strictly satisfies all
these inequalities. Notice that the set of inequalities (1") defines a
convex cone 03 in Ea, whose vertex is the origin. Except in degsnerate
cases, 03 intersects either one of planes z = 1 and z = -1, since it cannot
be contained in the region -1 =< z < +1. Hence, if a point u exists, it can
be found as follows. Let z = 1 in (1") and, using an algorithm due to
Shamos and Hoey [2] for finding in time O(nlogn) the intersection of n
half-planes, find the polygon of solutions. If no such polygon exists,
then set z = -1 and repeat the process. In one case or the other there
will be a polygon P from which we can choose u as one of its interior points.
Now we augment u = (“1’“2’“3) to form a point v = (ul,uz,u3,M) in E4,
taking M > 0. Clearly, v strictly satisfies all the inequalities in
Aog 2 0. As we saw in the derivation of R, we can construct a rotation
RO such that !RO = (0,0,0,Ko), and this rotation has the property that all
entries in the fourth column of AORO are positive.
The rotation Ro can be made to differ very little from the identity
transformation by taking M very large. Thus, we take M large enough so
that no fourth column entries in A+ or A_ change sign when the rotation RO

is performed. Hence all entries in the fourth column of A% are nonzero.




-
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As we noticed construction of u can be done in time O(nlogn); the
construction of a rotation RO' can be done in constant time, as previously
discussed in a similar situation.

In conclusion we will replace the original set of inequalities (3) by

ARy (zR))' 2 0. (3"
To summarize the preceding discussion, the intersection of n half-spaces,
expressed by (3),can be obtained as follows.
Step 1: Find a point u in the interior of the set of sclutioms to (I")
and construct a corresponding rotation Ro Replace A by ARO
(This can be done in time O(nlogn) using the half-plane
intersection algorithm [2].]
S:.op 2: Find the f:onvex hull df_n) of the set of points (an/a

for all {1 such that a,, > 0. Find the convex hull dfb) of the set

i4

of points “11’"1&"12/&14"13/“14) for all i such that a,, < 0.

i4
(This can be done in time O(nlogn) by using the convex hull

algorithm described in [5].]

Step 3: Using the algorithm for intersecting polyhedra [4], test if
d_(’_D) n de) has an interior. If so, the half-space intersection
is empty; if not, find a separating plane Pix + Py + P42 + ™ 0.
(This can be done in time O(nlogn), according to the results
reported in [4].]

Step 4: Find a rotation R of E4 so that the separating plane is mapped to

the plane at infinity (this can be done in constant time]. Find
the R-transforms of the polyhedra ﬂin) and dfn) and project them

through the origin back to the x, = 1 hyperplane. [This requires
time 0(n).] Let &™) and AP be the resulting polyhedra.

16°842/844:2437234)
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Step 5: Find the convex-hull d‘k(n) of the union of the two polyhedra
™ ana @™ [This 1s done in time 0(n) using the
algorithm of [5].]

Step 6: Compute the R'lnal-transfom of the vertices and faces of the
dual @ of @%(®) | Then renormalize the transformed vertices
to obtain &, the generalized polyhedron which forms the
intersection of the given half-spaces. [this step also

requires time O(n).]

In conclusion, we see that the preceding algorithm runs in time
O(nlogn), Steps 1, 2, and 3 being the limiting ones.

To eliminate solutions to (2) corresponding to negative points, one can
augment the set (2) with the inequality x, 2 0 before applying the algorithm.
The remaining positive points project to solutions to the set (1), and if
there are equatorial points which are extreme points they should be

retained to facilitate the description of the set of solutions.

4. Degenerate Cases

One degenerate case,which may arise in Step 3 of the main algorithm,
occurs when the intersection d_f_D) n dED) is nonempty but has no interior,
i.e., has zero volume. In this case, the algorithm described in (4] may be

. D) f g(® .
used to find a point g (ql’qZ’qS) in d_f_ N dS . Ifx “1"‘2"3"0
is any solution to (3), then both 9%, + 9%, + 43Xy + X, 2 0 and
“qyXy = Q9%y = dg3Xq - X, 2 0 must be satisfied. Hence, the set of solutions
to (3) is constrained to the hyperplane 9%, + qzxz'-t- QX3 + X, = 0. Thus,
we construct a rotation R* such that (ql,qz,qa,l)k* = (0,0,0,I(*), where K*

is a positive constant.




15

Now, after R* is applied, the set of inequalities AR*g' 2 0 imply

&
= 0, so the fourth column of AR is superfluous. Thus, the set of

*4
inequalities AR*i' 2 0 may be replaced by a set having the form (1') b

whose algorithmic solution has already been described. Hence, to obtain the
solution to (2) one need only rotate the result by (R*)'l.

Another degenerate case could arise in Step 1 of the main algorithm
when there is no interior point u to the set of solutions to (1'), i.e.
to A x' 2 0. In this case, while seeking such an interior point, we either

0=
discover (a) that while no interior point exists there is a point

3
the cone c3 fails to intersect either plane z = +1 or z = -1.

vs= (vl,vz,v3), with ¥ ® 1l or v, = -1 which satisfies (1'), or (b) that

In case (a) the point v must lie in a plane through the origin which
contains all solutions to (1'). Suppose, this plane has the equation
m, X + m,y + m,z = 0. We then choose ﬁ* so that (ml,mz,ma,O)Rf = (0,0,0,K*)
for some positive K* and solve as in the previous case. The equation of
the desired plane is obtained as a result of applying the algorithm due to
Shamos and Hoey (2].

In case (b), the inequalities (1') imply that z = 0. Hence, the third
column of A is superfluous. The set of inequalities Ax' = 0, given in (3),
may be replaced by a set of the form (1') by deleting the third column.

The solution to (1') is obtained as before.

.




e

————

1.

5.
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